Life Testing

We want to determine the life

expectancy (distribution) of some
product or device, let's say a solar
lighting device. What can we do?
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When frequentist approaches become computationally challenging
or rely too heavily on asymptotic properties, Bayesian techniques

can be a useful alternative.

m Allows for the use of “prior” information, 7(\).

m Conjugate priors can be used to help avoid the need for
expensive MCMC computations.

m Inference can be made using marginal posterior distributions,
e.g.) inference for A\ using m(A(|t).
m Designs can be more attractive if the sample size is small.

Bayes' Theorem

LA[t)7(N)

T(Alt) =

[ LAt)7(N)dX

The goal of this presentation is to introduce a computationally
more appealing Bayesian approach to order-restricted inference for
a simple step-stress accelerated life testing and its design

optimization.
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Likelihood Function

Assuming that a cumulative exposure model is appropriate and

that the life distribution of a test unit is exponential at any level of

stress, the likelihood function is:

L(Al, )\Q‘t) :)\?IAS’Q exp(—)\lUl — )\QUQ) (1)

Here, n; are the number of units that failed at the respective stress
level x;, i.e.) the number of failures observed in the time interval
(Tg'_l,’?'i), and U2 = Z?il(ti,j — Ti—l) + (Nz — ni)(’}"@' — Ti—l)- NZ'
are the number of units entering at the respective stress level
which depend on the the censoring proportion 7*.

Bayesian Framework

m Likelihood is as seen in Equation 1.
m Prior is a 3-parameter gamma distribution.

m Posterior results in a tractable expression that is a mixture of
gamma densities.

o the Dt
L(AnA:|D)

Posterior for
Parameters

(A

() = e () exp(=)
m(e) = s (e = ) (= (e = M)

a; € {1,2,3,...} and v, > 0 i=1,2.

m Shift parameter A\; imposes the order restriction.
m 7 and 7o are the rate hyperparameters.

m o and a9 are the shape hyperparameters.

Cumulative Exposure Distribution

Solar Lighting device data from Han and Kundu (2015) was used.
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Solar Lighting Inference

n:35,a1:a2:2,71:72:0.001 .
A1 Y =
Mean Median Mode Variance
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The covariance was found to be 7.05686e-05.

Monte Carlo Simulations

Parameter and hyperparameter settings:

m )\ = 1.1052, \y = 2.7183

B X = (g = 2

m Y = 7 = 0.001 and then v; = v = 0.0001
The selections made for A\; and Ay were motivated by the desire to
follow choices made for related frequentist work of Han and Bai
(2020).
Using 1,000 simulations with n = 24 and then repeated for
n = 48, estimators for the parameters of the posterior in Equation
2 were approximated by Monte Carlo simulations. Total test
duration choices were 7 =0.9, 7 = 1.2 and 7 = 1.5.
Given the progressive Type-l censoring scheme, choices for the

proportion of surviving units to censor after the first level were
chosen as 7 = 0%, m = 10% and © = 20%.

Simulation: n =24, a1 = =2, 71 = =7

A Ao

¥ T 7" | Mean Median Mode Variance | Mean Median Mode Variance | Covariance
0% | 1.240 1207 1140 0.131 | 3.681 3587 3395 0.993 0.042

09| 10% | 1.242 1209 1142 0.132 | 3788 3.682 3.468 1.143 0.044

20% | 1.245 1211 1.143 0.133 3913 3794 3552 1.363 0.047

0% | 1.220 1.192 1.136 0.108 3.766 3.664 3.458 1.134 0.034

0.0001 | 1.2 | 10% | 1.221 1.194 1.137 0.108 3.871 3758 3528 1.358 0.036
20% | 1.223 1195 1.138 0.109 | 4.008 3.880 3.619  1.597 0.038

0% | 1.210 1.186 1.136  0.093 | 3.887 3.772 3539  1.420 0.031

15| 10% | 1.212 1.188 1.138 0.094 4035 3906 3.644 1.711 0.032

20% | 1.214 1.189 1.139 0.095 4182 4.037 3.742 2.023 0.035

0% | 1.240 1.207 1.140 0.131 3.680 3586 3.394 0.993 0.042

09| 10% | 1.242 1209 1142 0132 | 3787 3.681 3467 1.142 0.044

20% | 1.245 1211 1143 0.133 | 3912 3793 3551  1.362 0.047

0% | 1.220 1.192 1.136 0.108 | 3.765 3.663 3457 1.133 0.034

0.0010 | 1.2 | 10% | 1.221 1.194 1.137 0.108 | 3.870 3.757 3.527  1.356 0.036
20% | 1.223 1195 1.138 0.109 4006 3.878 3.618 1.596 0.038

0% | 1.210 1.186 1.136 0.093 | 3.886 3.771 3538 1418 0.031

15| 10% | 1.212 1188 1.138 0.094 | 4033 3905 3642 1.709 0.032

20% | 1.214 1.189 1.139 0.095 | 4.181 4.036 3.740  2.020 0.035

Design Optimization

Using equal step durations, the optimal value for the total test
duration was obtained under the information-theoretic design
criterion H as well as various criteria D /C'/A/M /E based on the
posterior variance-covariance matrix of A (or 3 based on a linear
link).

Design Utilities

m H-optimal design maximizes the expected information gain
based on the posterior entropy.

m [D-optimal design maximizes the expected determinant of the
inverse of the posterior variance-covariance matrix.

m C-optimal design maximizes the expected reciprocal of the
posterior variance at normal operating conditions.

m A-optimal design maximizes the expected reciprocal of trace
of the posterior variance-covariance matrix.

m M-optimal design maximizes the expected reciprocal of the
maximum posterior variance.

m E-optimal desigh maximizes the expected minimum eigenvalue
of the inverse of the posterior variance-covariance matrix.

H-optimality D-optimality A-optimality M-optimality E-optimality

n | w* A* U+ A* u* A U= A* U+ A* u*

0% | 3.03157 1.54094 | 1.68886 0.07531 | 0.94991 0.65499 | 0.80339 0.54297 | 0.80462 0.55817
24 | 10% | 3.14477 151972 | 2.06914 0.07753 | 0.97278 0.68724 | 0.81491 0.57791 | 0.870290 0.59303
20% | 3.31735 1.49254 | 2.26275 0.07989 | 0.92093 0.72582 | 0.79772 0.61535 | 0.85347 0.63023
0% | 2.35213 2.04859 | 1.09102 0.03033 | 0.87307 0.39953 | 0.72381 0.33424 | 0.74188 0.34037
48 | 10% | 2.35499 2.01628 | 1.11958 0.03202 | 0.84862 0.42509 | 0.76127 0.36039 | 0.77342 0.36611
20% | 2.55947 1.98132 | 1.27335 0.034290 | 0.81280 0.45669 | 0.74901 0.39041 | 0.76193 0.39650

Conclusions

m Using a 3-parameter gamma distribution as a conditional
prior, we have performed Bayesian estimation and design
optimization for progressively Type-l censored simple SSALTs
under continuous inspections assuming that the lifetimes are
exponential and that a cumulative exposure model holds.

m [ his prior ensures that the failure rates increase as the stress
level increases.

m [ his prior leads to a tractable joint posterior distribution,
which is a mixture of gamma densities.

Future Directions

m Extending this framework to the interval monitoring setting

m Exploring different censoring schemes



